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a b s t r a c t

In this paper, we propose a multi-period location model with transportation economies-of-scale that
distributes a single perishable product. The problem involves a single supplier, a layer of potential facility
locations, and a layer of retailers. Each facility is assumed to practice cross-docking and each retailer faces
a constant demand rate in each planning period. A Zero-Inventory-Ordering (ZIO) inventory policy is
assumed to be adopted at each retailer. The demand at each retailer must be satisfied by the end of the
planning horizon, although backlogging is allowed in the intermediate periods. The decisions to be made
comprise the location of facilities, the allocation of retailers to the open facilities with single-sourcing,
and the logistics shipping plan over time for the open facilities and the retailers allocated to them. The
goal is to minimize the total cost that includes (1) the fixed setup cost for locating facilities, (2) the
inbound cost at the open facilities, (3) the transportation cost from the facilities to the retailers (which is
assumed to be an economies-of-scale function), and (4) the inventory cost at the retailers. We first
formulate the problem as a mixed integer nonlinear programming model. By effectively utilizing the
structural properties of the cost functions and combining with the ZIO, we show how to linearize the
nonlinear cost components. The results of a set of numerical experiments performed on randomly
generated medium-sized problem instances are reported.

& 2015 Elsevier B.V. All rights reserved.
1. Introduction

The geographically dispersed suppliers, facilities, and retailers
form the core logistical layers across a typical supply chain and an
effective integrated network design is crucial to its success. Inte-
grated logistics distribution network design is concerned with
determining the logistics infrastructure (e.g., the location of facil-
ities and the facility–retailer assignments) and the logistics plan-
ning operations such as inventory management and transportation.
In this paper, we aim to develop a multi-period location–transpor-
tation network design model addressing the location, perishable
inventory management, and transportation economies-of-scale
issues to support such kind of decision-makings. We consider a
single supplier that produces and distributes a single perishable
product to the retailers over a finite number of planning periods.
Each retailer reports its demand in each period to the supplier. Chan
et al. (2002a, 2002b) and Shen et al. (2009) show that the Zero-
hen@nju.edu.cn (H. Shen),
Inventory-Ordering (ZIO) policy is very effective for a wide range of
logistics planning problems. Thus, we assume that each retailer
manages its inventory using a ZIO policy. The ZIO policy is a class of
popular inventory replenishment policy for which the retailer pla-
ces an order only when its inventory level drops to zero. The sup-
plier is obligated to fulfill the demands of each retailer via a selected
facility by the end of the planning period, although shortages and
backlogging are allowed at the retailers during intermediate periods
yet incur associated costs. To reduce the response time, provide
good services, and achieve the transportation economies-of-scale,
the supplier is assumed not to fulfill any demand via direct ship-
ment and each retailer should source from a single facility. This is in
line with the traditional uncapacitated facility location problem
(UFLP) and many other location-inventory models such as Shen
et al. (2003) and Teo and Shu (2004) in the literature. Instead, the
supplier operates a number of uncapacitated facilities that practice
cross-docking and coordinate the shipments between the supplier
and the retailers. As shown by Simchi-Levi et al. (2003) and Ballou
(2004), cross-docking is an effective logistics planning technique
that aims at reducing logistics costs and improving service qualities
by coordinating the operations of different logistical entities across
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a supply chain. Since each facility is assumed to adopt cross-dock-
ing, they thus do not hold any inventory. Like in Snyder et al. (2007),
the location decision is assumed to be static that is made at the
beginning of the planning horizon and does not change afterwards.
The reason is that the location decision is primarily strategic which
involves a substantial investment and therefore is hard to reverse.
We also assume that the facility-retailer assignment decision is
static, i.e., the allocation of the retailers to the facilities does not
change over time. Its importance is highlighted in Shen and Max
(2005) and Snyder et al. (2007) as static single-sourcing is adopted
by many firms in their strategic network design. Static single-
sourcing is also adopted by some other logistics distribution net-
work models such as Freling et al. (2003), Huang et al. (2005) and
Ahuja et al. (2007) in the literature. In contrast to the static network
design decisions, the logistics shipping plan on the deliveries made
to the open facilities and the retailers allocated to them changes
over time. Clearly, the dynamic shipping plan has non-negligible
impact on the transportation and inventory costs. Economies of
scale is assumed for the transportation costs, which leads to com-
plex non-convex cost functions. The objective is to provide the
optimal solution so as to minimize the total cost that includes:
(1) the fixed setup cost for locating the facilities, (2) the inbound
cost at the facilities, (3) the transportation cost from the facilities to
the retailers, and (4) the inventory cost at the retailers.

The rest of this paper is organized as follows. Section 2 reviews the
recent research development on related problems. Section 3 presents
two models for the multi-period location problemwith transportation
economies-of-scale and perishable inventory, namely the mixed
integer nonlinear programming model and the linearized set-covering
model. In Section 4, we present a greedy heuristic to solve the non-
linear discrete pricing problem so that the network design problem
can be solved within the column generation framework. Computa-
tional results of a set of randomly generated instances are reported in
Section 5. Finally, we conclude the paper in Section 6.
2. Literature review

One stream of research related to ours is the study of integrated
location-inventory problems that aims at studying the impact of the
operational level decision-makings of logistics on the strategic
supply chain design decisions. Daskin et al. (2002) and Shen et al.
(2003) propose a joint location-inventory problem that integrates
the location, transportation, and warehouse inventory replenish-
ment decisions. Gebennini et al. (2009), Miranda and Garrido
(2009), Shen and Max (2005), Shu et al. (2005), Snyder et al. (2007),
Sourirajan et al. (2007), Ozsen et al. (2008, 2009), and Park et al.
(2010) study various important variants of the joint location-
inventory problem. In contrast, Teo and Shu (2004), Üster et al.
(2008), Keskin et al. (2010), Shu (2010), Shu et al. (2010), Keskin and
Üster (2012), and Li et al. (2013) propose several location-inventory
models that explicitly consider infinite horizon two-echelon
inventory cost functions. Two-echelon inventory management
needs to optimally coordinate the warehouse and the retailers to
jointly replenish their inventories, which is still an open problem in
the inventory literature. Due to the many different cost and service
considerations in these models, these problems are usually very
computationally challenging. By effectively exploiting the structural
properties of these models, these papers propose column genera-
tion, Lagrangian relaxation, and other approximation approaches to
address these problems. The aforementioned papers typically
assume that the inventory is not perishable and the transportation
cost function is linear. Lin et al. (2006) propose a location-inventory
model that explicitly considers transportation economies-of-scale
between the plants and the facilities. Each facility is assumed to
adopt a one-for-one inventory replenishment policy to serve the
retailers assigned to it. Inventories, which are not perishable, are
only kept at the facilities and backlogging is not allowed. Further-
more, although the literature on location-inventory problems is
relatively rich, the limited existing studies on multi-period location-
inventory problems are contributed by Shen and Max (2005) and
Snyder et al. (2007). Both models need to assume that the facility–
retailer assignment vectors are period-dependent so that their
models are tractable. The recent work of Soysal et al. (2015) incor-
porates environmental factors into the traditional two-echolen
distribution system. Whereas the multi-period location-inventory
model proposed in this paper complements the existing literature
by considering the transportation economies-of-scale, the inventory
perishability, and the facility–retailer assignment vectors being
common across the entire planning horizon.

Our problem is also related to a class of multi-period single-
sourcing problems in the literature. In a series of papers, Romeijn
and Romero Morales (2001, 2003, 2004), Freling et al. (2003),
Huang et al. (2005), and Ahuja et al. (2007) propose an important
class of multi-period single-sourcing problems. They study the
structural properties of these models; develop several efficient
exact and greedy algorithms to solve these models; and use
extensive computational tests to validate that their approaches can
produce very high quality solutions efficiently. These models are
related to our problem except that the location decision is ignored.

Another related stream of research is the perishable inventory
management problems. Perishable inventory management has
been studied within the logistics planning area (cf. Shen et al.,
2009; Haijema, 2014). We refer to Nahmias (1982) for an excellent
review on perishable inventory management.
3. Model formulation and the solution

In this section, we formulate the multi-period location problem
with transportation economies-of-scale and perishable inventory
that jointly optimizes the location, the facility–retailer assignment,
and the inventory replenishment decisions. In this problem, we are
given a single supplier,m potential locations for facilities, n retailers,
and the length of T planning periods. The supplier produces and
distributes a single perishable product to satisfy the demands of the
geographically dispersed retailers. Facility specific fixed cost Fj is
charged for opening and operating a warehouse at location j,
j m1, ,= … . Each retailer i faces a constant demand Di t, in the tth
period, i n t T1, , ; 1, ,= … = … . All demands must be satisfied by
the end of the planning horizon. We assume that each retailer
replenishes its inventory from an open facility using a ZIO policy for
which the retailer places an order only when its inventory level
drops to zero. We also assume that each facility is operated as a
cross-docking facility, i.e., does not hold inventory, which cross-
docks the inventory to each retailer it serves upon receiving the
inventory from the supplier. Shortages and backlogging are allowed
at the retailers in the intermediate periods. Each retailer i incurs a
per unit holding cost rate hi t, for the amount of inventory held in
period t and a per unit backordering cost rate bi t, for the amount of
the demand backlogged in period t. The inbound shipment of
consolidated orders from the supplier to each cross-docking facility
incurs a linear transportation cost and the outbound shipment from
each cross-docking facility to the retailers it serves incurs a non-
convex piecewise linear transportation cost.

Since the inventory is perishable, we use 1i s t, ,α ≤ to denote the
deterioration rate of inventory from time s to t at retailer i, i.e., one
unit of inventory in time s shrinks to i s t, ,α unit in time t. Note that

1i s t, ,α = if t s≤ , i.e., the inventory does not deteriorate if it is
needed for backlog or used in the same period. Throughout this
paper, we assume that the deterioration rate satisfies the condi-
tion
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Fig. 1. Modified all unit discount cost structure.
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where i l,α denotes the deterioration rate for each unit of inventory
at retailer i and at time l (cf. Chu et al., 2005).

To facilitate the development of the model formulation, we let
Pi s t, , denote the amount of the demand of retailer i in time t that is
satisfied by using the inventory received in time s. In addition, we
use Q j s i, , to denote the amount of the inventory delivered to facility
j in time s that is cross-docked directly to retailer i. We assume
that whenever retailer i receives Q j s i, , units of the inventory from
facility j at time s, it can use them to satisfy Pi s t, , units of the
demand at time t. In addition to determining the inventory
replenishment decisions ( Pi s t, , and Q j s i, , ), we still need to simul-
taneously determine the location of facilities (denoted by yj) and
the assignment of retailers to facilities (denoted by xij). We let yj be
1 if facility j is open and 0 otherwise. Also, we let xij be 1 if retailer i
is assigned to facility j and 0 otherwise. We also let
X x i n j m: 1, , ; 1, ,ij= { = … = … }. By defining the facility–retai-
ler assignment vector X in this way, we implicitly assume that the
facility–retailer assignment is identical across all planning periods,
i.e., the facility–retailer assignment is period independent.

Before we formally present the mathematical formulation for
the multi-period location problemwith transportation economies-
of-scale and perishable inventory, we first summarize the cost
components and discuss their structural properties at the facility
and the retailer level, respectively.

3.1. Cost components at facility level

At the facility level, we assume that for all
j m s T1, , ; 1, ,= … = … , it contains two costs: (1) Facility specific
fixed cost Fj of opening and operating a facility at location j; (2) the
inbound transportation cost incurred by facility j serving retailers
in S at time s, which is assumed to be a linear function of the total
shipping volume Qi S j s i, ,∑ ∈ received by facility j at time s. Let aj
denote the per unit shipment cost from the supplier to facility j.
Then, the inbound transportation cost of facility j serving retailers
in S at time s equals to a Qj i S j s i, ,∑ ∈ .

3.2. Cost components at retailer level

At the retailer level, we use f P P P X, , , ,i j s i s i s i s T, , , ,1 , ,2 , ,( … ) to denote
the aggregate transportation and inventory related costs of retailer
i served by facility j in time s, which is a function of the replen-
ishment plan P t T: 1, ,i s t, ,{ = … } and the facility–retailer assign-
ment vector X. It depends on which facility serves retailer i and
how retailer i utilizes the shipment received to fulfill the demand
in each period. Hence, we need to define fi j s, , (·) in terms of the
amount Pi s t, , used to satisfy the demand of retailer i at time t. The
replenishment cost fi j s, , (·) consists of two components: the out-

bound transportation cost denoted by fi j s
Tr
, , (·) and the inventory

related cost denoted by fi s
In
, (·), both of which are functions of the

replenishment plan P t T: 1, ,i s t, ,{ = … }, i.e.,

f P P X f P P X f P P, , , , , , , , .i j s i s i s T i j s
Tr

i s i s T i s
In

i s i s T, , , ,1 , , , , , ,1 , , , , ,1 , ,( … ) = ( … ) + ( … )

In the following, we formulate these two cost components expli-
citly and discuss their structural properties.

� Outbound Transportation Cost fi j s
Tr
, , (·) : Note that the total amount

delivered from facility j to retailer i at time s is
Q P x/j s i t

T
i s t i s t ij, , 1 , , , ,α= ∑ ( )= . Then, the outbound transportation

cost function becomes
f P P X f
P

x, , , ,i j s
Tr

i s i s T i j s
Tr

t

T
i s t

i s t
ij, , , ,1 , , , ,

1

, ,

, ,
∑

α
( … ) = ( )

=

In practice, these shipments are usually delivered by Less-than-
Truckload (LTL) carriers. Interestingly, in practice, when the
shipper is going to ship L units, M L Mi i 1≤ < + and if L Mi≥ ′, the
shipping cost is charged as if they were shipping Mi 1+ units as
shown in Fig. 1. This is called shipping L but declaring Mi 1+ . We
use c to denote the minimum charge for shipping a small volume,
i.e., c is the total cost when the shipping volume is no more than
M1. This commonly used practice implies that the outbound
transportation cost function fi j s

Tr
, , (·) has the structure described by

the solid line originated at point 0, 0( ) as illustrated in Fig. 1. We
refer to such cost functions as modified all-unit discount cost
functions (cf. Chan et al., 2002a, 2002b). It is easy to see that the
outbound transportation cost is non-increasing in each Pi s t, , .� Inventory Replenishment Cost fi s

In
, (·): The inventory replenish-

ment cost function fi s
In
, (·) can be formulated as

f P P h P

b b P

, ,

,

i s
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i s i s T
l s r s

l

i r
t s
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1

, , ,

, , 1 , ,
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∑
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+ ( + … )
≥ = =

−

<
−

where the first term corresponds to the total holding cost and
the second is the total backordering cost. We note that this
function term is linear and facility independent.

We assume that the demand incurred by each retailer can only
be fulfilled by a single facility, i.e., single-sourcing is enforced. The
objective is to minimize the total location, inbound and outbound
shipments, and inventory holding and backordering costs. The
general model for the multi-period location problem with trans-
portation economies-of-scale and perishable inventory can be
formulated as follows:

P F y a Q

f P P X x i n

: min

, , , s. t. 1, 1, ,

, 1

j

m

j j
j

m

s

T

j
i

n

j s i

j

m

i

n

s

T

i j s i s i s T
j

m

ij

1 1 1 1
, ,

1 1 1
, , , ,1 , ,

1

∑ ∑ ∑ ∑
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( ) + ( )

+ ( … ) = = …

( )

= = = =

= = = =

x y i n j m0, 1, , ; 1, , , 2ij j− ≤ = … = … ( )
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, , ,∑ = = … = …
( )=

Q
P
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4

j s i
t

T
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ij, ,

1
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∑

α
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y j m0, 1 , 1, , , 6j ∈ { } = … ( )

P i n s t T0, 1, , ; , 1, , . 7i s t, , ≥ = … = … ( )

The above formulation contains a nonlinear objective and a set of
linear constraints with binary and continuous variables. Constraints
(1) imply single-sourcing which ensures that each retailer is allo-
cated to exact one open facility over the entire planning horizon.
Constraints (2) require that each retailer can only be allocated to an
open facility. Constraints (3) ensure that the demand of retailer i at
time t must be satisfied by the inventory received across the entire
planning horizon. Constraints (4) model if retailer i is served by
facility j, the inventory cross-docked to retailer i from facility i at
time s must be equal to the total demand across all time periods,
after taking into account the deterioration rates. Constraints (5–7)
are standard binary and non-negativity requirements on the vari-
ables. Thus, the problem P( ) is a very complicated mixed integer
nonlinear program that is almost impossible to be directly solved to
optimality in an efficient way. We can observe that for a given
assignment vector X̄ and by letting Sj be the corresponding set of
retailers assigned to facility j, the problem P( ) can be decomposed
into a set of O(m) minimum-cost single-facility multi-retailer
models H j Smin , j( ), one for each facility j. The minimum-cost sin-
gle-facility multi-retailer model (with facility j serving retailers in
Sj) can be formulated as the following optimization problem:

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

H H j S

a Q f P P X

P D i S t T

Q
P

i S s T

P i S s t T

: min ,

min , , ,

s. t. , ; 1, , ,

, ; 1, , ,

0, ; , 1, , .

j j

s

T

j
i S

j s i
i S s

T

i j s i s i s T

s

T

i s t i t j

j s i
t

T
i s t

i s t
j

i s t j

1
, ,

1
, , , ,1 , ,

1
, , ,

, ,
1

, ,

, ,

, ,

j j

∑ ∑ ∑ ∑

∑

∑
α

( ) ( )

≡ + ( … ¯ )

= ∀ ∈ = …

= ∀ ∈ = …

≥ ∀ ∈ = …

= ∈ ∈ =

=

=

This subproblemmodel Hj( ) is interesting in its own right since it takes
several well-known operations management models studied in the
literature as special cases. For example, it generalizes the model stu-
died in Chu et al. (2005) and Chan et al. (2002a) to more general
network topology. Unfortunately, Hj( ) does not look tractable since it is
still a non-convex optimization problem. The model Hj( ) is also the
same as the logistics planning model developed in Shen et al. (2009)
except that the inbound transportation cost function is linear. Based on
the linearization strategy adopted in Shen et al. (2009), in the rest of
this section, we show how to linearize the nonlinear cost components
in Hj( ) by effectively utilizing the structural properties of the cost
functions and combining this analysis with the ZIO policy.

We first show that Hj( ) can be reformulated as a minimum cost
multi-commodity network flow model by exploiting the properties of
the ZIO policy. To define the network for the minimum cost multi-
commodity network flow reformulation, let us consider retailer i in Sj.
We define the graph G V A,i i i( ) with vertices set Vi and arcs set Ai. Let
V v v v v: , , , ,i T0 1 2={ … }. For each pair of vertices v v,a b{ }, there are T arcs
linking them. Therefore, we have A e v v t t T: , , : 1, , .i a b={ = ( ) = … }
The replenishment plan of retailer i under a ZIO policy corresponds to
a path from node v0 to node vT, i.e.,

v v, , , ,i P T0 1 2λ λ λ= { = … = }

in G V A,i i i( ), in which each arc v v s, , ,r r a b1λ λ( ) = ( )+ represents the
decision of using an order received in time s to satisfy all the demands
incurred by retailer i from time period a to time period b, i.e.,

P D P D P D P D, , , , ,i s a i a i s a i a i s b i b i s b i b, , , , , 1 , 1 , , 1 , 1 , , ,= = … = =+ + − −

with P 0i s k, , = for all k a< and k b> . This is called the consecutive-
cover-ordering property, i.e., the replenishment received by retailer i at
time s is used to satisfy the demand over consecutive periods a b,[ ], for
some time period a and b. The cost associated with this arc is simply

c f P P X, , , .v v s
i

i j s i s i s T, , , , , ,1 , ,a b
= ( … ¯ )

By constructing the network in this way, it is easy to see that the
following proposition holds.

Proposition 1. The cost term f P P X, , ,s
T

i j s i s i s T1 , , , ,1 , ,∑ ( … ¯ )= for each
i Sj∈ can be represented as a shortest path problem defined on
G V A,i i i( ).

With Proposition 1 and noting that in this case the amount of
the inventory cross-docked via facility j is

d
P

,v v s
i

t

T
i s t

i s t
, ,

1

, ,

, ,
a b ∑

α
=

=

Hj( ) can be reformulated as a minimum cost multi-commodity
network flow formulation as follows:

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟

⎛
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MCMCNF LH j S
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c w w w
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: min ,
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1 if ,

0 otherwise,

,
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w
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T

j
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a b t
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a b t
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1 ,
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,
, , , ,
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, ,

, :
, ,

0
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≡

+ −

=
( = )

− ( = ) ∀ ∈

≥ ≥ ∀ ≤
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∈ < > <

Note that w 1a b t
i
, , = if and only if retailer i uses the order received at

time t to fulfill all the demands from time period a to b. The
amount of the inventory cross-docked via facility j at time t, for
retailer i, is thus d wa b t

i
a b t
i

, , , , . Therefore, the term d wi a b a b t
i

a b t
i

, , , , ,∑ <
refers to the total inventory transshipped through facility j at time
t. All the function terms in MCMCNF( ) are now linear.

To this end, we have shown that how the subproblem Hj( ) can
be reformulated as a network flow model. In order to obtain a
linear formulation for P( ) and by the fact that the LP relaxation of
the set-covering formulation can usually give a very tight bound,
we thus reformulate P( ) as a set-covering model (LP relaxation) as
follows:

⎧
⎨⎪
⎩⎪

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎫
⎬⎪
⎭⎪

C i jmin : 1, ; 1 0, ,
8j S

j S j S
j S i S

j S j S, ,
:

, ,∑ ∑ ∑ ∑γ γ γ≥ ∀ ≥ ≥ ∀
( )∈

where C F LH j Smin ,j S j w,
a b t
i
, ,

= + ( ) and j S,γ is 1 if facility j serves the



Table 1
Computational results with 6 periods: the impact of transportation economies-of-
scale.

No. of
locations

No. of
retailers

No. of
facilities
open (1)

No. of
facilities
open (2)

CPU time
MIP
(seconds)

No. of col-
umns
generated

10 10 2 2 2.13 55
10 20 2 3 8.72 187
10 50 2 4 47.2 513
10 100 2 4 191.7 1638
20 10 2 2 3.85 101
20 20 2 3 19.71 426
20 50 3 4 101.2 1017
20 100 3 4 417.3 3321

Table 2
Computational results with 12 periods: the impact of transportation economies-of-
scale.

No. of
locations

No. of
retailers

No. of
facilities
open (1)

No. of
facilities
open (2)

CPU time
MIP
(seconds)

No. of col-
umns
generated

10 10 1 3 2.83 51
10 20 2 3 12.2 181
10 50 2 4 56.6 536
10 100 2 4 221.2 1710
20 10 2 3 4.13 109
20 20 2 3 21.7 406
20 50 3 4 115.5 1036
20 100 3 5 435.3 3262
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maximal retailers set S and 0 otherwise. Based on the set-covering
formulation (8), we will show how to apply a column generation
approach to tackle P( ) in the rest of this section.

We note that the number of columns in the set-covering for-
mulation (8) is very huge. So, initially we can choose a subset of
these columns with all singletons, which we call the master pro-
blem, to solve. If the reduced costs associated with those non-basic
columns are non-negative, then we obtain the optimal solution to
the set-covering formulation (8); otherwise we can find some
columns with negative reduced costs, in case of which, we add
these columns into the master problem and start the next itera-
tion. The key is to have an efficient way to check the non-nega-
tivity of the reduced costs, which is equivalent to solve

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟F LH j Smin , ,

9w j S
j

i S
i

, ,a b t
i
, ,

∑ π+ ( ) −
( )∈

where i n: 1, ,iπ{ = … } is the optimal dual solution obtained in one
of the iterations of the column generation solution process. It is
easy to see that checking the non-negativity of (9) is equivalent to
determining whether there exists a solution (j,S) such that

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟LH j S LH j S Fmin , min , .

10w w i S
i j

a b t
i

a b t
i

, , , ,

∑ π′( ) ≡ ( ) − < −
( )∈

As shown in the previous section, evaluating the function value of
LH j Smin ,

wa b t
i
, ,

′( ) for fixed j and S is an easy network flow optimization

problem. However, the problem of LH j Smin ,w j S, ,a b t
i
, ,

′( ) with j and S

being variables is unlikely to be computationally tractable. Next, we
propose an efficient greedy heuristic to address LH j Smin ,w j S, ,a b t

i
, ,

′( ). Let

I and J denote the set of retailers i n1, 2, ,= … and the set of potential
facility locations j m1, 2, ,= … , respectively. For each j J∈ , we use
the following greedy heuristic to solve LH j Smin ,w j S, ,a b t

i
, ,

′( ).
Greedy Heuristic
STEP 0. Initially S = ∅ and set LH jmin , : 0

wa b t
i
, ,

′( ∅) = .

STEP 1. Do while S I≠ and LH j S Fmin ,
w j

a b t
i
, ,

′( ) ≥ − .

Choose i I S∈ ⧹ such that

LH j S i LH j Smin , ,
11i I S

[ ′( ∪ { }) − ′( )]
( )∈ ⧹

is minimized. Let in be the selected retailer that achieves the
minimum value and set S S i:= ∪ { }⁎ . From the description of the
greedy heuristic, it is not difficult to see it contains O n2( ) steps.

In the next section, we report the computational results of using
the column generation approach to solve the set-covering model (8).
4. Computational results

In this section, we summarize our computational experiences
with the formulation and the solution approach outlined in the
previous sections. We conducted the experiments on a dual-core
CPU of 2 GHz and 2G RAM running the Windows 7 operating
system. The reported CPU times exclude input times. All the cost
parameters are randomly generated as follows:

� Location and inventory related cost parameters: Fj is generated
uniformly in 600, 2000[ ]; i s t, ,α is randomly generated in 0.5, 1[ ];
h b,i t i t, , are generated uniformly in 1, 2[ ] and 2, 5[ ], respectively;
and Di t, is generated uniformly in 50, 200[ ].

� Inbound transportation cost parameters: We randomly generate
the per unit transportation cost from the supplier to facility j as
follows: aj is generated uniformly in 1, 3[ ].

� Outbound transportation cost parameters: We randomly generate
the modified all unit discount transportation cost structure for
each retailer as follows: β1 is generated uniformly in 6, 10[ ] and
M1 in 1, 20[ ]; β2 is generated uniformly in 3, 1β[ ) and M2 in
20, 40( ]; β3 is generated uniformly in 1.5, 2β[ ) and M3 in 40, 80( ].
Therefore, it is clear that c M1 1β= .

We note that the transportation cost structures generated above
reflect the different quantity discount schemes. In reality, the
inbound transportation is usually made by truckload carriers with
a large shipping volume. Whereas, the outbound shipping volume
is relatively smaller and usually made by less-than-truckload car-
riers. Due to this, the per unit cost associated with the inbound
shipment is lower than the one under the outbound deliveries.

In order to examine the impact of transportation economies-of-
scale on the design of a distribution network, we compare our
model with a benchmark model without considering it. In the
benchmark model, we consider a uniform per unit outbound
transportation cost rate which is denoted by β̄ and calculated as

/31 2 3β β β β¯ = ( + + ) .
With these inputs, we solve the random problem instances

using the CPLEX 11.0 LP solver. In case the LP solution to the final
master problem is not integral, we apply a branch-and-price
procedure to obtain the IP solution. Tables 1 and 2 present the
computational results of the binary set-covering model and the
comparison of it with the benchmark model with 6 periods and 12
periods, respectively. The input sizes of the tested random
instances range from 6-period 10-location 10-retailer to 12-period
20-location 100-retailer. In both tables, the column titled “CPU
time MIP (seconds)” reports the average CPU time needed to solve
the binary IP formulation for different input sizes of the problem
instances. The columns titled “No. of Facilities Open (1)” and “No.
of Facilities Open (2)” give the average number of facilities open in
implementing the model with transportation economies-of-scale
and the benchmark model, respectively. We implement each class
of the problem instances 20 times and report the average values of
the number of facilities open (rounded to the nearest integer), CPU
time, and the number of columns generated (rounded to the



Table 3
Computational results with 6 periods: the impact of perishable inventory.

No. of
locations

No. of
retailers

No. of
facilities
open (1)

No. of
facilities
open (2)

CPU time
MIP
(seconds)

No. of col-
umns
generated

10 10 2 2 1.74 43
10 20 2 2 7.27 168
10 50 2 2 51.3 527
10 100 3 2 205.2 1615
20 10 2 2 3.66 112
20 20 2 2 22.18 392
20 50 3 2 95.7 937
20 100 3 3 451.3 3073

Table 4
Computational results with 12 periods: the impact of perishable inventory.

No. of
locations

No. of
retailers

No. of
facilities
open (1)

No. of
facilities
open (2)

CPU time
MIP
(seconds)

No. of col-
umns
generated

10 10 2 1 2.75 47
10 20 2 2 14.6 173
10 50 3 2 67.3 525
10 100 3 2 278.8 1528
20 10 2 2 4.83 117
20 20 2 2 31.2 426
20 50 3 2 147.5 1153
20 100 3 2 572.4 3471
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nearest integer). In most of the problem instances implemented,
the LP relaxation gives us integral solutions. Tables 1 and 2
demonstrate that the medium-sized problem instances can be
solved efficiently via our approach. For example, the average CPU
time of solving the problem class with 12 periods, 20 potential
locations, and 100 retailers is within 9 min. An important obser-
vation we obtain from the implementations is that the number of
facilities open in the model with transportation economies-of-
scale is consistently no more than it in the benchmark model and
this phenomenon becomes more obvious when the number of
planning periods increases. Unlike the traditional location-inven-
tory models, all the facilities practice cross-docking and inven-
tories are purely held by the retailers in our model. In most tra-
ditional studies, inventory cost consideration is reviewed as the
most important reason for facility consolidation due to risk pool-
ing. Weiskott (1998) shows that many companies are fond of
streamlining and consolidating their distribution networks, espe-
cially for those electronics companies whose products are of high
value and low weight. The inventory consideration, however, does
not directly lead to a more consolidated distribution network in
our case. In contrast, due to transportation economies-of-scale, our
model encourages large volume shipment consolidation at the
facilities and thus, opens fewer number of facilities.

We next show how the inventory deterioration rate affects the
distribution network design. We implement and compare the models
with perishable inventory and with nonperishable inventory (i.e.,

1i t,α = for all i t, ). For the random instance with perishable inventory,
we uniformly generated i t, 1α − in , 1i t,α( ), where i T,α is uniformly
generated in 0.35, 0.5[ ], i.e., the inventory deterioration rate is gen-
erated as a non-increasing sequence of the time period. All the other
input parameters and the experiment setting are generated in the
same way as in the previous experiments. The computational results
are reported in Tables 3 and 4. The columns titled “No. of Facilities
Open (1)” and “No. of Facilities Open (2)” give the average number of
facilities open in implementing the model with perishable inventory
and the model with nonperishable inventory, respectively. As in the
previous experiments, the LP relaxation gives integral solutions for
most test instances. Interestingly, we can observe that inventory
deterioration does not encourage large volume shipment consolida-
tion at the facilities, and thus need to open more facilities in the
network design. This becomes more obvious when the number of
planning periods increases. The inventory is replenished and used to
satisfy the demand of each period in a more timely manner. In this
situation, large volume delivery is not as preferred and consolidation is
not an attractive option. Thus, the model with perishable inventory
consistently uses more facilities in its distribution network than the
model with nonperishable inventory.
5. Conclusions

In this paper, we propose a multi-period location model inte-
grating facility location, perishable inventory replenishment, and
non-convex economies-of-scale transportation cost functions. The
model assumes that each facility practices cross-docking and func-
tions as a transshipment point of inventory flows between the sup-
plier and the retailers. Each retailer reports a constant demand rate
to the supplier in each planning period. The inventory is perishable
over periods and a retailer dependent deterioration rate parameter is
used to measure this. We also assume that each retailer replenishes
its inventory using a ZIO policy. Although shortages and backlogging
are allowed in the intermediate periods at the retailers, all the
demands are required to be satisfied by the end of the planning
period. The inbound and outbound transportation costs are modeled
as a linear and a piecewise linear non-decreasing economies-of-scale
function, respectively. The objective is to minimize the total location,
transportation, inventory holding, and backordering costs. We first
formulate the problem as a nonlinear mixed integer programming
model. By exploiting the structural properties of the economies-of-
scale transportation cost function and the ZIO policy, we show how
to linearize the model and reformulate it as a set-covering model. We
propose a greedy heuristic to tackle the subproblem that must be
solved in each iteration of the column generation procedure. We
conduct a set of numerical experiments based on random problem
instances with up to 12 periods, 20 location candidates, and 100
retailers. The computational results show that the proposed solution
approach can efficiently solve the medium-sized problem instances.
Through the computational study, we also examine how the
economies-of-scale transportation and the inventory deterioration
concerns affect the strategic network design, respectively.

The model proposed in this paper assumes that the demand at
each retailer is known in each period. The model also assumes that
the supply is always enough to match the demand by the end of
the planning horizon. These ignored concerns limit the potentially
practical application of the model. In reality, the demand and
supply are often highly unpredictable for which stochastic and
robust models are adopted to handle these uncertainties (cf. Shu
and Song, 2014). Thus, it will be worthwhile to generalize the
model to accommodate these important issues in future research.
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